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STATISTICAL METHODS IN NEUTRON DIFFUSION
By R. D. RICHTMYER and J. VON NEUMANN

ABSTRACT. There is reproduced here some correspondence on a method of solving
neutron diffusion problems in which data are chosen at random to represent a number
of neutrons in a chain-reacting system. The history of these neutrons and their progeny
is determined by detailed calculations of the motions and collisions of these neutrons,
randomly chosen variables being introduced at certain points in such a way as to represent
the occurrence of various processes with the correct probabilities. If the history is followed
far enough, the chain reaction thus represented may be regarded as a representative sample
of a chain reaction in the system in question. The results may be analyzed statistically to
obtain various average quantities of interest for comparison with experiments or for

design problems.

This method is designed to deal with problems of a more complicated nature than
conventional methods based, for example, on the Boltzmann equation. For example, it
is not necessary to restrict neutron energies to a single value or even to a finite number
of values and one can study the distribution of neutrons or of collisions of any specified
type not only with respect to space variables but with respect to other variables, such as
neutron velocity, direction of motion, time. Furthermore, the data can be used for the
study of fluctuations and other statistical phenomena.

THE INSTITUTE FOR ADVANCED STUDY
PRINCETON, NEW JERSEY

School of Mathematics
March 11, 1947

Mr. R. Richtmyer
Post Office Box 1663
Santa Fe, New Mexico

DEAR Bos,
This is the letter I promised you in the course of our telephone conversation

on Friday, March 7th.

I have been thinking a good deal about the possibility of using statistical methods
to solve neutron diffusion and multiplication problems, in accordance with the
principle suggested by Stan Ulam. The more I think about this, the more I become
convinced that the idea has great merit. My present conclusions and expectations
can be summarized as follows:

(1) The statistical approach is very well suited to a digital treatment. I worked
out the details of a criticality discussion under the following conditions:

(a) Spherically symmetric geometry.

(b) Variable (if desired, continuously variable) composition along the radius,
of active material (25 or 49), tamper material (28 or Be or WC), and slower-
down material (H in some form).
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(c) Isotropic generation of neutrons by all processes of (b).

(d) Appropriate velocity spectrum of neutrons emerging from the collision
processes of (b), and appropriate description of the cross-sections of all processes
of (b) as functions of the neutron velocity; i.e. an infinitely many (continuously
distributed) neutron velocity group treatment.

(¢) Appropriate account of the statistical character of fissions, as being able
to produce (with specified probabilities), say 2 or 3 or 4 neutrons.

This is still a treatment of “.nert” criticality: It does not allow for the hydro-
dynamics caused by the energy and momentum exchanges and production of
the processes of (b) and for the displacements, and hence changes of material
distribution, caused by hydrodynamics; i.e. it is not a theory of efficiency. I do
know, however, how to expand it into such a theory [cf. (5) below].

The details enumerated in (a)—(¢) were chosen by me somewhat at will. It seems
to me that they represent a reasonable model, but it would be easy to make
them either more or less elaborate, as desired. If you have any definite desiderata
in this respect, please let me know, so that we may analyze their effects on
the set-up. ,

(2) 1 am fairly gertain that the problem of (1), in its digital form, is well suited
for the ENIAC. I will have a more specific estimate on this subject shortly. My
present (preliminary) estimate is this: Assume that one criticality problem requires
following 100 primary neutrons through 100 collisions (of the primary neutron
or its descendants) per primary neutron. Then solving one criticality problem
should take about 5 hours. It may be, however, that these figures (100 x 100)
are unnecessarily high. A statistical study of the first solutions obtained will clear
this up. If they can be lowered, the time will be shortened proportionately.

A common set-up of the ENIAC will do for all criticality problems. In changing
over from one problem of this category to another one, only a new numerical
constants will have to be set anew on one of the “function table” organs of the
ENIAC.

(3) Certain preliminary explorations of the statistical-digital method could be
and should be carried out manually. I will say somewhat more subsequently.

(4) It is not quite impossible that a manual-graphical approach (with a small
amount of low-precision digital work interspersed) is feasible. It would require a
not inconsiderable number of computers for several days per criticality problem,
but it may be possible, and it may perhaps deserve consideration until and unless
the ENIAC becomes available.

This manual-graphical procedure has actually some similarity with a statistical-
graphical procedure with which -solutions of a bombing problem were obtained
during the war, by a group working under S. Wilks (Princeton_University and
Applied Mathematics Panel, N.D.R.C.). I will look into this matter further, and
possibly get Wilks’s opinion on the mathematical aspects.

(5) If and when the problem of (1) will have been satisfactorily handled in a
reasonable number of special cases, it will be time to investigate the more general
case, where hydrodynamics also come into play; i.e. efficiency calculations, as
suggested at the end of (1). I think that I know how to set up this problem, too:
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One has to follow, say 100 neutrons through a short time interval As; get their
momentum and energy transfer and generation in the ambient matter; calculate
from this the displacement of matter; recalculate the history of the 100 neutrons
by assuming that matter is in the middle position between its original (unperturbed)
state and the above displaced (perturbed) state; recalculate the displacement of
matter due to this (corrected) neutron history; recalculate the neutron history due
to this (corrected) displacement of matter, etc., iterating in this'manner until a
“‘self-consistent’’ system of neutron history and diéplacement of matter is reached.
This is the treatment of the first time interval Az. When it is completed, it will
serve as a basis for a similar treatment of the second time interval Az; this, in turn,
similarly for the third time interval At; etc. In this set-up there will be no serious
difficulty in allowing for the role of light, too. If a discrimination according to
wavelength is not necessary, i.e. if the radiation can be treated at every point as
isotropic and ‘black, and its mean free path is relatively short, then light can be
treated by the usual “diffusion” methods, and this is clearly only a very minor
complication. If it turns out that the above idealizations are improper, then the
photons, too, may have to be treated ‘“‘individually” and statistically, on the same
footingasthe neutrons. Thisis,of course, a non-trivial complication, butitcan hardly
consume much more time and instructions than the corresponding neutronic part.
It seems to me, therefore, that this approach will gradually lead to a completely
satisfactory theory of efficiency, and ultimately permit prediction of the behavior
of all possible arrangements, the simple ones as well as the sophisticated ones.

(6) The program of (5) will, of course, require the ENIAC at least, if not more.
1 have no doubt whatever that it will be perfectly tractable with the post-ENIAC
device which we are building. After a certain amount of exploring (1), say with
the ENIAC, will have taken place, it will be possible to judge how serious the
complexities of (5) are likely to be.

Regarding the actual, physical state of the ENIAC my information is this: It
is in Aberdeen, and it is being put together there. The official date for its com-
pletion is still April Ist. Various people give various subjective estimates as to
the actual date of completion, ranging from mid-April to late May. It would
seem as if the late. May estimate were rather safe.

1 will inquire more into this matter, and also into the possibility of getting some
of its time subsequently. The indications that I have had so far on the latter score
are encouraging.

In what follows, I will give a more precise description of the approach outlined
in (1); i.e. of the simglest way I can now see to handle this group of problems.

Consider a spherically symmetric geometry. Let r be the distance from the origin.
Describe the inhomogeneity of this system by assuming N concentric, homo-
geneous (spherical shell) zones, enumerated by an index i=1,..., N. Zone
No. iisdefined by r,_, S r<r,thery, r, ra, ..., rn-y, ry being given

O=ro<ri<ry<...<ry-;<ry=R,

where R is the outer rad us of the entire system.



Let the system consist of the three components discussed in (1), (b), to be
denoted A, T, S, respectively. Describe the composition of each zone in terms
of its content of each of A, T, S. Specify these for each zone in relative volume
fractions. Let these be in zone No. i, x;, y;, Z;, respectively.

Introduce the cross sections per cm® of pure material, multiplied by
1910ge = 0.43 . .., and as functions of the neutron velocity v, as follows:

Absorptionin A, T, S:
ZA(v), 2;(0), Zs(v);

Scattering in A, T, S:
;(v), ZT(v), Z;,(v)-

Fission in A, with production of 2, 3, 4 neutrons:
(2) (3) (4)

Y ), Y (), X (v
JA

JA A
Scattering as well as fission are assumed to produce isotropically distributed
neutrons, with the following velocity distributions.
If the incident neutron has the velocity v, then the scattered neutrons velocity
statistics are described for A, T, S, by the relations

v =vha(v), V' =vdr(v), V' =0vd(v).

Here v’ is the velocity of the scattered neutron, ¢,(v), ¢(v), ¢s(v) are known
functions, characteristic of the three substances A, T, S (they vary all from 1 to 0),
and v is a random variable, statistically equidistributed in the interval 0, 1.

Every fission neutron has the velocity v,.

I suppose that this picture either gives a model or at least provides a prototype
for essentially all those phenomena about which we have relevant observational
information at present, and actually for somewhat more. It may be expected to
provide a reasonable vehicle for the additional relevant observational material that
is likely to arise in the near future.

Do you agree with this?

In this model the state of a neutron is characterized by its position r, its velocity v,
and the angle 0 between its direction of motion and the radius. It is more con-
venient to replace 0 by s = r cos 0, so that /(r?> — s?) is the “perihelion distance”
of its (linearly extrapolated) path.

Note that if a neutron is produced isotropically, i.e. if its direction *“at birth”
is equidistributed, then (because space is three-dimensional cos 6 will be equi-
distributed in the interval —1, 1; i.e. s in the interval —r, r.

It is convenient to add to the characterization of a neutron explicitly the No. i
of the zone in which it is faund, i.e. with r;_; < r < r;. Itis, furthermore, advisable
to keep track of the time ¢ to which the specifications refer.

Consequently, a neutron is characterized by these data:
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Now consider the subsequent history of such a neutron. Unless it suffers a
collision in zone No. /, it will leave this zone along its straight path, and pass into
zones Nos. i + 1 or i — 1. It is desirable to start a “new” neutron whenever the
neutron under consideration has suffered a collision (absorbing, scattering, or
fissioning—in the last-mentioned case several “new” neutrons will, of course, have
to be started), or whenever it passes into another zone (without having collided).

Consider first, whether the neutron’s linearly extrapolated path goes forward
from zone No. i into zone No. i + 1 or i — 1. Denote these two possibilities by
I and IL

If the neutron moves outward, i.e. if s 2 0, then we have certainly I. If the
neutron moves inward, i.e. if s < 0, then we have either 1 or II, the latter if, and
only if, the path penetrates at all into the sphere r;_,. It is easily seen that the
latter is equivalent to s2 > r2 — r2,. So we have

s=20.. o [
r2+s%, rrso- @)

<0, 3?{','_2_1 +53, >0 4} L

The exit from zone No. i will therefore occur at

«f =" for I;
‘=r,-_1 fOI‘H.

It is easy to calculate that the distance from the neutron’s original position to the
exit position is d — s* — s, where

s* = + (r*)%(s? — r)%, + forl, + for IL

The probability that the neutron will travel a distance 4’ without suffering a

collision is 107/¢, where
(3) 4)

(2)
f= {Z W+YW+YW+Y W+ (v)‘x,-
aA sA fA SA fA ‘

HE @+ SO+ {Zo+ ol
aT sT as S

It is at this point that the statistical character of the method comes into evidence.
In order to determine the actual fate of the neutron, one has to provide now the
calculation with a value A, belonging to a random variable, statistically equi-
distributed in the interval O, 1, i.e. £ is to be picked at random from a population
that is statistically equidistributed in the interval O, 1. Then it is decreed that
107 7% has turned out to be 4, i.e. '

~1%0g 4

f

From here on, the further procedure is clear.
If 4’ = d, then the neutron is ruled to have reached the neighboring zone No.
i + 1 (+ for I, — for II) without having suffered a collision. The ‘“new’’ neutron

d =



(i.e. the original one, but viewed at the interzone boundary, and heading into the
new zone), has characteristics which are easily determined: i is replaced by i + 1,
r by r*, s is easily seen to go over into s*, v is unchanged, ¢ goes over into
t* =t + dfv. Hence, the “new” characteristics are

it1, r* s* o, %

If, on the other hand, d' < d, then the neutron is ruled to have suffered a
collision while still within zone No. i, after a travel d’. The position at this stage
is now

r* = /(r* + 2sd’ + d'?),
and the time

’

Y=t —
v

The characteristic contains, accordingly, at any rate i, r* and ¢* in place of i, r
and 7. It remains to determine what becomes of s and v.

As pointed out before, the “new” s will be equidistributed in the interval —r*, r*.
It is therefore only necessary to provide the calculation with a further p’, belonging
to a random variable, statistically equidistributed in the interval O, 1. Then one
can rule that s has the value

s’ =r*(2p’ - 1).

As to the “new” v, it is necessary to determine first the character of the collision:
Absorption (by any one of A, T, S); scattering by A, or by T, or by S; fission
(by A) producing 2, or 3, or 4 neutrons. These seven alternatives have the relative
probabilities

=) ()% + Y W)y + Y (v)z,,
aA aT as
-fi= Z (v)x;,
sA
f3 —fz = ; (v)yis
fa—f3= Zs: (v)z;,

(2)

—fo=Y ()x,
7A

3)

Je —fs= Z (v)x;,
TA

4

f—fs =2 (@)x.
1A

We can, therefore, now determine the character of the collision by a statistical
procedure like the preceding ones: Provide the calculation with a value p belonging
to a random variable, statistically equidistributed in the interval 0, 1. Form
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ji = yf, this is then equidistributed in the interval 0, f. Let the seven above
cases correspond to the seven intervals 0, fy; £y, f2; f2, f3: fas fas Jas S35 o So
fs, /, respectively. Rule, that that one of those seven cases holds in whose interval i
actually turns out to lie.

Now the value of v can be specified. Let us consider the seven available cases
in succession.

Absorption: The neutron has disappeared. It is simplest to characterize this
situation by replacing v by 0.

Scattering by A: Provide the calculation with a value v belonging to a random
variable, statistically equidistributed in the interval 0, 1. Replace v by

v’ =vd,(v).
Scattering by T: Same as above, but

v’ = v¢y(v).
Scattering by S: Same as above, but

v’ =vd(v).

Fission: In this case replace v by v,. According to whether the case in question
is that one corresponding to the production of 2, 3, or 4 neutrons, repeat this 2, 3,
or 4 times, respectively. This means that, in addition to the p’, s’ discussed above,
the further p”, s"; p”, s”; p™, s™ may be needed.

This completes the mathematical description of the procedure. The compu-
tational execution would be something like this:
Each neutron is represented by a card C which carries its characteristics

i, r, s, v, t,

and also the necessary random values

A bV, P P, p”, P

I can see no point in giving more than, say, 7 places for each one of the 5 charac-
teristics, or more than, say, 5 places for each of the 7 random variables. In fact, I
would judge that these numbers of places are already higher than necessary. At
any rate, even in this way only 70 entries are consumed, and so the ordinary
80-entry punchcard will have 10 entries left over for any additional indexings, etc.,
that one may desire.

The computational process should then be so arranged as to produce the card C’
of the “new” neutron, or rather 1 to 4 such cards C’, C", C”, C" (depending on
the neutron’s actual history, cf. above). Each card, however, need only be provided
with the 5 characteristics of its neutron. The 7 random variables can be inserted
in a subsequent operation, and the cards with » = 0 (i.e. corresponding to neutrons
that were absorbed within the assembly) as well as those with i = N + 1 (i.e.
corresponding to neutrons that escaped from the zssembly), may be sorted out.



The manner in which this material can then be used for all kinds of neutron
statistic investigations is obvious.

1 append a tentative “computing sheet” for the calculation above. It is, of
course, neither an actual “computing sheet” for a (human) computer group, nora
set-up for the ENIAC, but I think that it is well suited to serve as a basis for
either. It should give a reasonably immediate idea of the amount of work that is
involved in the procedure in question.

I cannot assert this with certainty yet, but it seems to me very likely that the
instructions given on this “computing sheet” do not exceed the “logical” capacity
of the ENIAC. I doubt that the processing of 100 ‘“neutrons” will take much
longer than the reading, punching and (once) sorting time of 100 cards, i.e. about
3 min. Hence, taking 100 “neutrons” through 100 of these stages should take
about 300 min., i.e. 5 hr.

Please let me know what you and Stan think of these things. Does the approach
and the formulation and generality of the criticality problem seem reasonable to
you, or would you prefer some other variant? ‘

Would you consider coming East some time to discuss matters further? When
could this be?

With best regards.

Very truly yours,
JOHN VON NEUMANN

TENTATIVE COMPUTING SHEET
Data:
ay ry x4 Yo 2
as functionsof i=1,..., Nt (ro =0);

%) %(v), ;(v), .,Zs(v)’ §(v),

2) 3) )

Y@, YO, YO, L), Y

sT sS A JA JA
as functions of v 20, < vol;
(3) vo;

@) da(v), O1(v), @s(v)
as functions of -v20, =<1%;

5 ~'%og A
as functions of 120, <1i.

+ Tabulated, (Discrete domain.)
t Tabulated, to be interpolated, or approximated by polynomials (Continuous domain.)
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Random variables:

R, A

R, u;

Ry v;

R, »p’;

Rs p";

Rs p";

R, p™;
1
2
3
4
5
6
7
8

Onlyfor #
9
10
11
12
13
14
15
16
17
18
19

Calculation

Instructions

rof C; — 1, see (1)
rof Cy, see (1)
(Cy)?

(C2)?

3-4

20, o

C3{<o @
(1)2 .

5+7

8{§0 - o

>0.°. 4

{d or® .2
R A |
{.szl or® .. +1
&z So—1
(10y

5412

11 sign) /13
14-Cy

x of C,, see (1)
yof C,, see (1)
zof C,, see (1)
Y. of Cq, see (2)

aA

Explanations
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20
21
22
23
24
25
26
27
28

29
30

31

32
33

34
35
36

37
38
"39
40
4]

42

43

Instructions

16 x 19
Y. of Cy, see (2)

aT

17 x 21
20 + 22
Y of C,, see (2)

asS

18 x 24
23+ 25

Y of C,, see (2)

SA

16 x 27

26 + 28
Y of C,, see (2)

sT

17 x 30

29 + 31
Y of C,, see (2)

sS
18 x 33

32 4+ 34

(2)
Y. of Cg, see (2)
i

16 x 36

35+ 37

(3)
Y of Cg, see (2)
JA

16 x 39

38 + 40

(4)
Y of C,, see (2)
i

16 x 42

Explanations
Z (v)x;
aA
Y ()
aT
Z )y
aT
Y @)%+ Y (0)y,
aA aT
O

Z; (v)z;
fi=X Ox + ) 0y + ¥ (0)z
aA aT S

Y. )
SA

h-h =Z(”)xi

sA

fa

Y (v)

sT

fi—1fs =§(U).Vt

fs
Y

sS

fo—f3= zs:(v)zi
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44
45
46

47

48

49
Only for P: 50
Only for P: 51

Instructions

41 +.43
~1%0g of R, see (5)
45:44

215 P
46{<15 R
P15
0. ,46}C‘
Cs +48
C, +11
Ci: 50
Cy: 10
c,: I
Cis: C,
Cs: 49

From here on only Q:

52
53

54
55
56
57
58
59
Only for Q,: 60

R, x 44
S;<26..0,

From here on only Q,, ..., 0,

Only for Q,: 61

¢ of R,, see (4)

Explanations
f
~1%0g A
d’
J|=2d.. P
d{<d.‘.Q
P..d =1
Q..d ~
t*=t+r
i*=i+e
Cy: i*
Cy: r*
Cy: s*
Cy: v
Cs: t*
p—uf
B<fy .0
2/l .
{<f2 " Qs
2fs .
{<f3 "+ Qs
2fs| .
{<f4 " Qe
2fd .
{<f5 "+ Qs
2fsl .
{<f6 "+ Qs
2fe .07
5d’
2sd’
d?
2sd’ + d'?
r?+2sd'+d"?
r*
Ci:
Cy,: r*
Cy: ...
Cs: O
Cy: t*
Pa(v) =¢
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762

Only for Q,: 62
Only for Q,: 63
Only for Qz,
64
Q39 Q4
65

66
67
68
69

From here on only Q,, Q,, Q;:

R. D. RICHTMYER AND J. VON NEUMANN

Instructions

¢ of R, see (4)
¢s of R,, see (4)

C, x (61 or 62 or 63)

02,05, 0,.". 64
05,06 Q,.°.(3)

2 xR,
66 — 1
59 x 67

Ci:
Ci:
Ci:
Ci:
Cs:

C,
59
68
65
49

70 2XR5
71 70 -1
59 % 71

72
73

Ci:
C;:
C5:
Ci:
Cs:

¢,
59
72
65
49

From here on only Q, Q,:
2 x Rg
75 74-1
76 59 x75

74

77

From here on only Q,:

Cct:
C3:
C3:
Cy:
Cs:

¢,
59
76
65
49

78 2 xR,
79 78 -1
80 59 x79

81

",
cr:

",
cy:
Ccy:

",
Cy':

",
cre

¢,
59
80
65
49

Explanations

() = ¢

- #s(v) T ¢
ve
03,05, 0, .". v =}v’
Qs, 06, @7 .. v =
2p’
20’ -1
s'
Ci: i
Cy: r*
Cy: ¢
Ci: Vv
Cy: 1*
2p"
2" -1
sll
Ci: i
c;: r*
Cy: ¢
Cy: v
c:: *
2p"

20" =1
s
Cy: i
cy:
Clsﬂ: sl”
Cq: v
Ccy: t*
2prm
20" -1
sllll
Cy: i
cy: r*
Cy: s
Cy: v
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April 2, 1947
Professor JOHN VON NEUMANN
The Institute for Advanced Study
School of Mathematics
Princeton, New Jersey

DEAR JOHNNY, :
As Stan told you, your letter has aroused a great deal of interest here. We

have had a number of discussions of your method and Bengt Carlson has even
set to work to test it out by hand calculation in a simple case.

It has occurred to us that there are a number of modifications which one might
wish to introduce, at least for calculations of a certain type. This would be true,
for example, if one wished to set up the problem for a metal system containing a
49 core in a tuballoy tamper. It seems to us that it might at present be easier to
define problems of this sort than, for example, problems for hydride gadgets. It
is not so much our intention to suggest that the method you are working on now
should be modified as to suggest that perhaps alternative procedures should be
worked out also. Perhaps one of us could do this with a little assistance from you;
for example, during a visit to Princeton. '

The specific points at which it seems to us modifications might be desired are
as follows:

(1) Of the three components A, T, S that you consider, only one is fissionable,
whereas in systems of interest to us, there will be an appreciable number of fissions
in the tuballoy of the tamper, as well as in the core material.

(2) On the other hand, we are not likely for some time to have data enabling
one to distinguish between the velocity dependence of the three functions

2) 3) )

), Y@, Y®

fA JA SA
that you introduce so that for any particular isotope these might as well be com-
bined into a single function of velocity with a random procedure used merely for
determining the number of neutrons emerging. If there is a single such function of
velocity for each of the three isotopes 25, 28, 49, the total number of function
tables required would be the same as in your letter.

(3) It is suggested that in the case of 25 or 28, one might wish to allow also for
the possibility of one neutron emerging from fission. The dispersion of the number
of neutrons per fission is not too well known but we think we could provide some
guesses. ,

(4) Because of the sensitive dependence of tamper fissions on the neutron energy
spectrum, it might be advisable to feed in the measured fission spectrum at the
appropriate point. This would, of course, require introduction of one or two
additional random variables and would raise the nasty question of possible velocity
correlation between neutrons emerging from a given fission.

(5) Material S could, of course, be omitted for systems of this sort. On the
other hand, when moderation really occurs, it seems to us there would have to be a
correlation between velocity and direction of the scattered neutron.
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(6) For metal systems of the type considered, it would probably be adequate to
assume just one elastically scattering component and just one inelastically scattering
component. These could be mixed with the fissionable components in suitable
proportions to mock up most materials of interest.

In addition, we have one general comment as follows: Suppose that the initial
deck of cards represents a group of neutrons all having ¢ = 0 as their time of origin.
Then after a certain number of cycles of operations, say 100, one will have a deck
of cards representing a group of neutrons having times of origin distributed from
some earliest #,, to a latest, #,. Thus all of the multiplicative chains will have
been followed uritil time ¢, and some of them will have been followed to various
later times. Then if one wishes, for example, to find the spatial distribution of
fissions, it would be natural to examine all fissions occurring in some interval At
and find their spatial distribution. But unless the interval Az is chosen within the
interval (0, ¢,) one cannot be sure that he knows about al/ the fissions taking
place in At; and the fissions that are left out of account may well have a systema-
tically different spatial distribution than those that are taken into account. There-
for, if, as seems likely, ¢, < t,, it would seem to be necessary to discard most of
the data obtained by the calculation. The obvious remedy for this difficulty would
seem to be to follow the chains for a definite time rather than for a definite number
of cycles of operation. After each cycle, all cards having ¢ greater than some pre-
assigned value would be discarded, and the next cycle of calculation performed
with those remaining. This would be repeated until the number of cards in the deck
diminishes to zero.

These suggestions are all very tentative. Please let us know what you think
of them.

Sincerely,
R. D. RICHTMYER
cc: S. ULam
C. MARK
B. CARLSON






